Final exam / 2020.12.8 / MAT 4233.001 / Modern Abstract Algebra

- 1. Let $\alpha = (2, 1, 4, 9, 8)(4, 7, 6, 5, 1)(3, 6, 4) \in S_9$ (permutation in cycle notation)
 - (a) What is the order of α ? Explain.
 - (b) What is the parity of α ? Explain.
 - (c) Express α^{1943} as a product of disjoint cycles. Explain.
- 2. Suppose $\varphi: G \to G'$ and $\psi: G' \to G''$ are homomorphisms of groups.
 - (a) Prove that their composite $\psi \varphi \colon G \to G''$ is a homomorphism.
 - (b) Prove that $\ker \varphi \triangleleft \ker \psi \varphi$
 - (c) Assuming G is finite and φ, ψ are surjective, express the index of ker φ in ker $\psi\varphi$ in terms of the orders of G', G'' and prove your assertion.
- 3. (a) Prove that \mathbf{Z}_8 is not an internal product of two proper subgroups.
 - (b) Same for the dihedral group D_4
- 4. (a) How many group homomorphisms $\varphi : \mathbf{Z}_{45} \rightarrow \mathbf{Z}_{27}$ are there?
 - (b) How many of these φ are injective and how many are surjective?
 - (c) Prove your assertions.