1. Let $\alpha=(2,1,4,9,8)(4,7,6,5,1)(3,6,4) \in S_{9}$ (permutation in cycle notation)
(a) What is the order of α ? Explain.
(b) What is the parity of α ? Explain.
(c) Express α^{1943} as a product of disjoint cycles. Explain.
2. Suppose $\varphi: G \rightarrow G^{\prime}$ and $\psi: G^{\prime} \rightarrow G^{\prime \prime}$ are homomorphisms of groups.
(a) Prove that their composite $\psi \varphi: G \rightarrow G^{\prime \prime}$ is a homomorphism.
(b) Prove that $\operatorname{ker} \varphi \triangleleft \operatorname{ker} \psi \varphi$
(c) Assuming G is finite and φ, ψ are surjective, express the index of $\operatorname{ker} \varphi$ in $\operatorname{ker} \psi \varphi$ in terms of the orders of $G^{\prime}, G^{\prime \prime}$ and prove your assertion.
3. (a) Prove that \mathbf{Z}_{8} is not an internal product of two proper subgroups.
(b) Same for the dihedral group D_{4}
4. (a) How many group homomorphisms $\varphi: \mathbf{Z}_{45} \rightarrow \mathbf{Z}_{27}$ are there?
(b) How many of these φ are injective and how many are surjective?
(c) Prove your assertions.
