Name:		
Nulle.		

Please show all work. If you use a theorem, name it or state it.

- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m, n) divides any common multiple of m and n.
- 2. Suppose H is a subgroup of **Z** that contains two distinct primes. Prove that $H = \mathbf{Z}$.
- 3. Sketch the subgroup lattice for \mathbf{Z}_{18} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.
- 4. Consider the set of all complex cube roots of unity $H = \{z \in \mathbb{C}: z^3 = 1\}$
 - (a) Show H is a subgroup of the multiplicative group of nonzero complex numbers \mathbb{C}^* .
 - (b) How many elements does H have? List them.
- 5. With H as in the preceding problem, define a function $\varphi \colon \mathbf{Z} \to H$ by $\varphi(k) = e^{2k\pi i/3}$.
 - (a) Prove that φ is a group homomorphism.
 - (b) Is φ 1-1? Onto? Explain.

1	2	3	4	5	total (50)