Name: \qquad

Please show all work. If you use a theorem, name it or state it.

1. Suppose m and n are natural numbers. Prove that
(a) any common divisor of m and n divides $\operatorname{gcd}(m, n)$.
(b) $\operatorname{lcm}(m, n)$ divides any common multiple of m and n.
2. Suppose H is a subgroup of \mathbf{Z} that contains two distinct primes. Prove that $H=\mathbf{Z}$.
3. Sketch the subgroup lattice for \mathbf{Z}_{18}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.
4. Consider the set of all complex cube roots of unity $H=\left\{z \in \mathbf{C}: z^{3}=1\right\}$
(a) Show H is a subgroup of the multiplicative group of nonzero complex numbers \mathbf{C}^{*}.
(b) How many elements does H have? List them.
5. With H as in the preceding problem, define a function $\varphi: \mathbf{Z} \rightarrow H$ by $\varphi(k)=e^{2 k \pi i / 3}$.
(a) Prove that φ is a group homomorphism.
(b) Is φ 1-1? Onto? Explain.

1	2	3	4	5	total (50)

