Name: \qquad

Please show all work. If you use a theorem, name it or state it.

1. Suppose x is an element of a finite group G. Show that
(a) x has finite order (denote it k),
(b) $x^{n}=e$ if and only if k divides n,
(c) $x^{|G|}=e$.
2. Sketch the subgroup lattice for \mathbf{Z}_{12}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.
3. Define a function from the integers to the multiplicative group of nonzero complex numbers $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ by $\varphi(k)=e^{2 k \pi i / 5}$.
(a) Prove that φ is a group homomorphism.
(b) What subgroup of \mathbf{Z} is the kernel of φ ?
(c) Sketch the image of φ.
(d) What does the first isomorphism theorem tell you about fifth roots of unity?
4. Suppose an element x of the dihedral group D_{n} is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x=r_{3} f_{2} r_{1} r_{2} f_{1}$ with $j=3$ and $k=2$] Under what conditions on j and k is x a rotation? A reflection? Explain.
5. Let $\alpha=(1,2,5,4)(2,6,3)(5,6,3,2,1)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What is the order of α ? Simplify α^{61}.
6. Prove that the set A_{n} of all even permutations in the symmetric group S_{n} is a normal subgroup. What can you say about the quotient group S_{n} / A_{n} ? Give a concrete example of a subgroup of S_{3} that is not normal. Explain.
7. How many group homomorphisms from \mathbf{Z}_{12} to $\mathbf{Z}_{3} \oplus \mathbf{Z}_{4}$ are there? How many of them are isomorphisms? If φ is such an isomorphism with $\varphi(2)=[1,3]$, what is $\varphi(1)$?
8. Suppose R is a commutative ring with unity. Show that the set of all units (elements that have a mutliplicative identity) in R is a multiplicative group under the same multiplication as R.

1	2	3	4	5	6	7	8	total (80)

