Name: \qquad

Please show all work. If you use a theorem, name it or state it.

1. Let $\alpha=(3,4,1)(5,2,1,3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{2019}.
2. Prove that any group of prime order is cyclic.
3. Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n)=k$. Define a group homomorphism $\varphi: \mathbf{Z} \rightarrow \mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ by $\varphi(i)=[i \bmod m, i \bmod n]$. Prove that $\operatorname{ker} \varphi=k \mathbf{Z}$. What does the first isomorphism theorem tell you about the image of φ ? What can you say about $\mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ if $\operatorname{gcd}(m, n)=1$?
4. Let F be a field. Show that the set of all polynomials in $F[x]$ with zero constant term is a maximal ideal. What is the quotient ring?

1	2	3	4	total (40)

