Name: _

Please show all work. If you use a theorem, name it or state it.

- 1. Let $\alpha = (3, 4, 1)(5, 2, 1, 3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{2019} .
- 2. Prove that any group of prime order is cyclic.
- 3. Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n) = k$. Define a group homomorphism $\varphi \colon \mathbf{Z} \to \mathbf{Z}_m \oplus \mathbf{Z}_n$ by $\varphi(i) = [i \mod m, i \mod n]$. Prove that $\ker \varphi = k\mathbf{Z}$. What does the first isomorphism theorem tell you about the image of φ ? What can you say about $\mathbf{Z}_m \oplus \mathbf{Z}_n$ if $\operatorname{gcd}(m, n) = 1$?
- 4. Let F be a field. Show that the set of all polynomials in F[x] with zero constant term is a maximal ideal. What is the quotient ring?

1	2	3	4	total (40)