Name: \qquad

Please show all work. If you use a theorem, name it or state it.

1. Suppose m and n are natural numbers. Prove that
(a) any common divisor of m and n divides $\operatorname{gcd}(m, n)$.
(b) $\operatorname{lcm}(m, n)$ divides any common multiple of m and n.
2. Sketch the subgroup lattice for \mathbf{Z}_{20}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.
3. Suppose an element x of the dihedral group D_{n} is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x=r_{3} f_{2} r_{1} r_{2} f_{1}$ with $j=3$ and $k=2$] Under what conditions on j and k is x a rotation? A reflection? Explain.
4. Suppose G is a finite group and $x \in G$. Prove:
(a) x has finite order.
(b) $x^{n}=e$ if and only if the order of x divides n.
5. Let \mathbf{R}^{+}denote the multiplicative group of positive real numbers. Suppose $a \in \mathbf{R}, a>1$. Prove that the exponential map $x \mapsto a^{x}$ is an isomorphism from \mathbf{R} to \mathbf{R}^{+}.

1	2	3	4	5	total (50)

