Name: _

Please show all work. If you use a theorem, name it or state it.

- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m, n) divides any common multiple of m and n.
- 2. Sketch the subgroup lattice for \mathbf{Z}_{20} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.
- 3. Suppose an element x of the dihedral group D_n is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x = r_3 f_2 r_1 r_2 f_1$ with j = 3 and k = 2] Under what conditions on j and k is x a rotation? A reflection? Explain.
- 4. Suppose G is a finite group and $x \in G$. Prove:
 - (a) x has finite order.
 - (b) $x^n = e$ if and only if the order of x divides n.
- 5. Let \mathbf{R}^+ denote the multiplicative group of positive real numbers. Suppose $a \in \mathbf{R}, a > 1$. Prove that the exponential map $x \mapsto a^x$ is an isomorphism from \mathbf{R} to \mathbf{R}^+ .

1	2	3	4	5	total (50)