Name: _

Please show all work. If you use a theorem, name it or state it.

- 1. Prove that the special linear group $SL_n(\mathbf{R})$ of all matrices with determinant 1 is a normal subgroup of the general linear group $GL_n(\mathbf{R})$ of all invertible $n \times n$ matrices with real coefficients. What is the quotient group?
- 2. Prove that the set of all rotations in the dihedral group D_n of all symmetries of the regular polygon with n vertices is a normal subgroup. What is the quotient group?
- 3. Suppose X is a set and F is a field. Let R be the ring of all functions $X \to F$ with pointwise operations.
 - (a) What are the units of R? Prove your assertion.
 - (b) Use an explicit example to show that R may have zero divisors.
- 4. With R as in the preceding problem and $s \in X$, let $I = \{f \in R: f(s) = 0\}$. Prove that I is a maximal ideal of R.

1	2	3	4	total (40)