Please show all work. If you use a theorem, name it or state it.

- 1. Let $m \in \mathbb{N}$ and $m\mathbf{Z} = \{mk: k \in \mathbf{Z}\}$. Prove $m\mathbf{Z}$ is an ideal of \mathbf{Z} . Conversely, prove that any ideal of \mathbf{Z} is of this form.
- 2. Suppose $\alpha = (1, 6, 2, 5, 3)(4, 7, 3, 5, 1, 2)(2, 6)$ is a permutation (in cycle notation). What is the order of α ? What is the parity of α ? Express α^{404} as a product of disjoint cycles.
- 3. Prove that the set of all rotations in the dihedral group D_n is a normal subgroup of D_n . Exhibit a subgroup of D_4 that is not normal. Explain.
- 4. How many group homomorphisms are there from \mathbf{Z} to \mathbf{Z}_{40} ? How many of them are one-to-one? How many of them are onto?
- 5. Suppose G is finite group of order n and $a \in G$. Prove that $a^n = e$. What can you conclude about the order of a, if n is prime? What can you conclude about groups of prime order?
- 6. Let \mathbf{C}^* denote the multiplicative group of nonzero complex numbers. Define $\varphi \colon \mathbf{R} \to \mathbf{C}^*$ by $\varphi(t) = e^{2\pi i t}$. Prove that φ is a group homomorphism. What are its kernel and image? What conclusion can you draw from the First Isomorphism Theorem?
- 7. Suppose F is a field and p is polynomial in F[x] of degree 2 or 3. Prove that p irreducible if and only if p has no roots in F. Give an explicit counter example for degree 4.
- 8. Let J be the ideal generated by x and 3 in $\mathbb{Z}[x]$. Prove that J is a maximal ideal.

1	2	3	4	5	6	7	8	total (80)