Name:		

Please show all work. If you use a theorem, name it or state it.

- 1. Let $m \in \mathbb{N}$ and $m\mathbf{Z} = \{mn: n \in \mathbf{Z}\}$. Prove $m\mathbf{Z} < \mathbf{Z}$. Conversely, prove that any subgroup of \mathbf{Z} is of this form.
 - Hint: given $H < \mathbf{Z}$, let m be the smallest positive element of H.
- 2. Suppose $\alpha = (1, 2, 3)(2, 3, 4, 5)$ is a permutation (in cycle notation). What is the order of α ? What is the parity of α ? Express α^{2017} as a product of disjoint cycles.
- 3. Suppose G is finite group of order n and $a \in G$. Prove that $a^n = e$. What conclusions can you draw about the order of a, if $a \neq e$ and n is prime? What conclusion can you draw about groups of prime order?
- 4. Let $H = \{z \in \mathbb{C}: z^n = 1\}$. Prove that H is a subgroup of \mathbb{C}^* isomorphic to \mathbb{Z}_n .
- 5. Prove Aut(\mathbf{Z}) $\cong \mathbf{Z}_m$ (m = ?)

1	2	3	4	5	total (50)