Midterm 2 / 2015.11.24 / MAT 4233.001 / Modern Abstract Algebra

Name: \qquad
Please show all work and justify your answers.

1. Let τ be the permutation $(1,4,5)(1,3,5,2)$. Factor τ^{2015} into disjoint cycles.
2. Exhibit two nontrivial proper subgroups of the symmetric group Σ_{3}, one that is normal in Σ_{3} and one not. Prove your assertions.
3. Suppose $\varphi: \mathbf{Z}_{14} \rightarrow \mathbf{Z}_{2} \oplus \mathbf{Z}_{7}$ is a homomorphism and $\varphi(3)=[1,5]$. Find $\varphi(1)$.
4. Let $X=\{0,1\}$. Let R be the ring of real valued functions on X with the usual pointwise operations. Prove that $\{f \in R: f(0)=0\}$ is a maximal ideal of R.
5. Suppose R is an integral domain. Show that $x, y \in R$ are associates, if and only if, they generate the same ideal in R.

1	2	3	4	5	total (50)

