Name: _

Please show all work and justify your answers.

- 1. Suppose H is a proper subgroup of **Z**. Show that $H = \langle x \rangle$, where x is the smallest positive element of H.
- 2. Sketch the subgroup lattice of the symmetric group Σ_3 .
- 3. For each divisor d of $|A_4|$, how many elements of order d does A_4 have?
- 4. Let τ be the permutation (1,4,5)(1,3,5,2). Factor τ^{2015} into disjoint cycles.
- 5. Exhibit two nontrivial proper subgroups of the dihedral group D_4 , one that is normal in D_4 and one not. Prove your assertions.
- 6. Suppose R is a commutative ring with unity and $a \in R$, $a \neq 0$. Define $\varphi : R \to R$ by $\varphi(x) = ax$. Verify that φ is an additive group homomorphism. Prove that if φ is surjective, then a is a unit and φ is bijective.
- 7. Let X be a set and $a \in X$. Let R be the ring of rational valued functions on X with the usual pointwise operations. Prove that $\{f \in R: f(a) = 0\}$ is a maximal ideal of R.
- 8. Suppose R is an integral domain. Show that $x, y \in R$ are associates, if and only if, they generate the same ideal in R.

1	2	3	4	5	6	7	8	total (80)