Name: _

Please show all work and justify your answers.

- 1. Given natural numbers m and n, prove that in **Z** we have $\langle m \rangle \cap \langle n \rangle = \langle \operatorname{lcm}(m, n) \rangle$.
- 2. Let τ be the permutation (2,4,5)(1,3,5,2). Write τ^{11} as a product of disjoint cycles.
- 3. Suppose $m \ge 2$, $a \in \mathbf{Z}_m$ and $\varphi : \mathbf{Z}_m \to \mathbf{Z}_m$ is given by $\varphi(x) = ax$.
 - (a) Show that φ is an additive automorphism of \mathbf{Z}_m if and only if a is a unit in \mathbf{Z}_m .
 - (b) Show that every additive automorphism of \mathbf{Z}_m is of that form with $a = \varphi(1)$.
 - (c) Show that θ : Aut $\mathbf{Z}_m \to U(m)$ given by $\theta(\varphi) = \varphi(1)$ is an isomorphism.
- 4. In U(20) find all cosets of the subgroup $\langle 11 \rangle$. Explain how your result agrees with predictions of Lagrange's theorem.

1	2	3	4	total (40)