Name: \qquad
Please show all work and justify your answers.

1. Given natural numbers m and n, prove that in \mathbf{Z} we have $\langle m\rangle \cap\langle n\rangle=\langle\operatorname{lcm}(m, n)\rangle$.
2. Let τ be the permutation $(2,4,5)(1,3,5,2)$. Write τ^{11} as a product of disjoint cycles.
3. Suppose $m \geq 2, a \in \mathbf{Z}_{m}$ and $\varphi: \mathbf{Z}_{m} \rightarrow \mathbf{Z}_{m}$ is given by $\varphi(x)=a x$.
(a) Show that φ is an additive automorphism of \mathbf{Z}_{m} if and only if a is a unit in \mathbf{Z}_{m}.
(b) Show that every additive automorphism of \mathbf{Z}_{m} is of that form with $a=\varphi(1)$.
(c) Show that θ : Aut $\mathbf{Z}_{m} \rightarrow U(m)$ given by $\theta(\varphi)=\varphi(1)$ is an isomorphism.
4. In $U(20)$ find all cosets of the subgroup $\langle 11\rangle$. Explain how your result agrees with predictions of Lagrange's theorem.

1	2	3	4	total (40)

