Name: $\qquad$
Please show all work and justify your answers.

1. Let $a, b \in \mathbf{N}$. Prove that any common divisor of $a$ and $b$ divides $\operatorname{gcd}(a, b)$.
2. Sketch the subgroup lattice for $S_{3}$.
3. Given natural numbers $m$ and $n$, prove that in $\mathbf{Z}$ we have $\langle m\rangle \cap\langle n\rangle=\langle\operatorname{lcm}(m, n)\rangle$.
4. Let $\tau$ be the permutation $(1,3,2,5,6)(2,3)(4,6,5,1,2)$. Write $\tau^{2015}$ as a product of disjoint cycles.
5. Construct an isomorphism between $\operatorname{Aut}\left(\mathbf{Z}_{m}\right)$ and $U(m)$.
6. Construct an isomorphism between $\operatorname{Aut}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right)$ and $S_{3}$.
7. In $U(45)$ find all cosets of the subgroup $\langle 11\rangle$. Explain how your result agrees with predictions of Lagrange's theorem. Determine whether the factor group is cyclic.
8. Let $m$ and $n$ be coprime natural numbers. Suppose $G$ is a commutative multiplicative group with $|G|=m$. Define $\varphi: G \rightarrow G$ by $\varphi(x)=x^{n}$. Prove that $\varphi \in \operatorname{Aut}(G)$.
9. Suppose $\varphi: \mathbf{Z}_{33} \rightarrow \mathbf{Z}_{3} \oplus \mathbf{Z}_{11}$ is a homomorphism and $\varphi(5)=[2,9]$. Find $\varphi(1)$. Is $\varphi$ an isomorphism? Explain.
10. Suppose $G<S_{n}$. Define $\varphi: G \rightarrow \mathbf{Z}_{2}$ by $\varphi(\tau)=0$ if $\tau$ is an even permutation and $\varphi(\tau)=1$ if $\tau$ is odd. Prove that $\varphi$ is a homomorphism. Explain how this proves $A_{n} \triangleleft S_{n}$.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | total (100) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |

