Name: _

Please show all work and justify your answers.

- 1. Let $a, b \in \mathbf{N}$. Prove that any common divisor of a and b divides gcd(a, b).
- 2. Sketch the subgroup lattice for S_3 .
- 3. Given natural numbers m and n, prove that in **Z** we have $\langle m \rangle \cap \langle n \rangle = \langle \operatorname{lcm}(m, n) \rangle$.
- 4. Let τ be the permutation (1,3,2,5,6)(2,3)(4,6,5,1,2). Write τ^{2015} as a product of disjoint cycles.
- 5. Construct an isomorphism between $\operatorname{Aut}(\mathbf{Z}_m)$ and U(m).
- 6. Construct an isomorphism between $\operatorname{Aut}(\mathbf{Z}_2 \oplus \mathbf{Z}_2)$ and S_3 .
- 7. In U(45) find all cosets of the subgroup $\langle 11 \rangle$. Explain how your result agrees with predictions of Lagrange's theorem. Determine whether the factor group is cyclic.
- 8. Let *m* and *n* be coprime natural numbers. Suppose *G* is a commutative multiplicative group with |G| = m. Define $\varphi: G \to G$ by $\varphi(x) = x^n$. Prove that $\varphi \in \text{Aut}(G)$.
- 9. Suppose $\varphi : \mathbf{Z}_{33} \to \mathbf{Z}_3 \oplus \mathbf{Z}_{11}$ is a homomorphism and $\varphi(5) = [2,9]$. Find $\varphi(1)$. Is φ an isomorphism? Explain.
- 10. Suppose $G < S_n$. Define $\varphi \colon G \to \mathbb{Z}_2$ by $\varphi(\tau) = 0$ if τ is an even permutation and $\varphi(\tau) = 1$ if τ is odd. Prove that φ is a homomorphism. Explain how this proves $A_n \triangleleft S_n$.

1	2	3	4	5	6	7	8	9	10	total (100)