Name: _

Please show all work and justify your answers.

- 1. Let $G = \mathbf{Z}_4 \oplus \mathbf{Z}_4$, $H = \langle [2,0], [0,2] \rangle$, and $K = \langle [1,2] \rangle$. Determine the isomorphism classes of G/H and G/K as finite abelian groups, i.e. represent each group as an external product of \mathbf{Z}_n 's.
- 2. Suppose G is a finite group, $H \triangleleft G$ and $K \triangleleft G$, Prove that $HK \triangleleft G$. Hint: don't forget to show HK < G first.
- 3. Suppose φ is a non-injective group homomorphism from \mathbf{Z}_{11} . Prove that φ is constant (which constant?).
- 4. Suppose R is a ring, n > 1 is a natural number, and $x^n = x$ for all $x \in R$. Prove that if $a, b \in R$ and ab = 0, then ba = 0.
- 5. Suppose R is a commutative ring with 500 elements, one of them unity, and I is an ideal of R with 100 elements. Prove that R/I is a field.

1	2	3	4	5	total (50)	%