Name: \qquad
Please show all work and justify your answers.

1. Show $\left[\begin{array}{ll}7 & 1 \\ 4 & 5\end{array}\right] \in G L\left(2, \mathbf{Z}_{11}\right)$ and find its inverse.
2. Determine the subgroup lattice of the symmetric group S_{3}. Pick a nontrivial subgroup of S_{3} other than A_{3} and find all its left cosets and right cosets.
3. Suppose G is an abelian multiplicative group with $a, b \in G$. Prove by induction that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbf{Z}$. Find an example to show that the result may not hold if G is not abelian.
4. Suppose a subgroup H of \mathbf{Z} contains two distinct primes. Prove that $H=\mathbf{Z}$.
5. Suppose G is a multiplicative group and $a \in G$. Define $\varphi: \mathbf{Z} \rightarrow\langle a\rangle$ by $\varphi(k)=a^{k}$. Prove that φ is an isomorphism if and only if $|a|=\infty$.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade: $\%$						

