Name: _

Please show all work and justify your answers.

- 1. Show $\begin{bmatrix} 7 & 5 \\ 4 & 5 \end{bmatrix} \in GL(2, \mathbb{Z}_{17})$ and find its inverse.
- 2. Determine the subgroup lattice of the dihedral group D_4 . Pick a nontrivial subgroup of D_4 , except the subgroup of all rotations, and find all its left cosets.
- 3. Prove that a cyclic group is isomorphic to \mathbf{Z} or \mathbf{Z}_m for some m.
- 4. Let $G = \mathbf{Z}_4 \oplus \mathbf{Z}_4$, $H = \langle [2,0], [0,2] \rangle$, and $K = \langle [2,3] \rangle$. Find all the cosets of H and K in G. Determine the isomorphism classes of G/H and G/K as finite abelian groups, i.e. represent each group as an external product of \mathbf{Z}_m 's.
- 5. Suppose G is a finite group, H < G and $K \triangleleft G$. Prove that HK < G and KH < G.
- 6. Suppose G is a group of order p^k , where p is a prime and $k \ge 1$. Prove that G contains an element of order p.
- 7. Let $n \in \mathbf{N}$. Prove that $\langle n \rangle$ is a maximal ideal of **Z** if and only if n is prime.
- 8. Suppose R is a commutative ring with unity and $R \setminus U(R)$ is an ideal. Prove that this ideal is the unique maximal ideal of R. Conversely prove that if M is the unique maximal ideal of R, then $R \setminus M = U(R)$.

1	2	3	4	5	6	7	8	total (80)	%