Name: _

Please show all work and justify your answers.

- 1. Suppose G is a multiplicative group, $a \in G$. Prove that $a^n = e \Leftrightarrow |a|$ divides n.
- 2. Prove that any group with prime order must be cyclic.
- 3. How many distinct group automorphisms of \mathbf{Z} are there? Explain. What about \mathbf{Z}_p ? Hint: think about generators and their possible values under an automorphism.
- 4. Let L be a line in \mathbb{R}^3 through the origin and let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection to L. Describe ker φ and its cosets in \mathbb{R}^3 geometrically. Sketch.
- 5. Suppose H and K are subgroups of a finite group G and one of them is normal in G. Let HK denote the set of all products $\{hk: h \in H, k \in K\}$. Prove that HK < G.

Hint: consider a product hkh'k' and observe that kh' belongs to Kh' and kH.

- 6. Suppose $\varphi: R \to S$ is a homomorphism of rings. Prove that ker φ is an ideal of R. Show by example that $\varphi(R)$ is not necessarily an ideal of S. What hypothesis on φ would ensure that $\varphi(R)$ is an ideal of S? Prove it.
- 7. Let $R = \mathbf{R}[x]$. Which elements of R are units? Are there nonzero zero divisors in R? Let $A = \{p(x) \in R: p(0) = 0\}$. Prove that A is an ideal of R. Is A a prime ideal? Maximal? Prove your assertions.
- 8. Prove that any cubic polynomial in $\mathbf{R}[x]$ is reducible. Are there irreducible cubic polynomials in polynomial rings in one variable over other fields? Explain.

1	2	3	4	5	6	7	8	total (80)