Name: \qquad
Please show all work and justify your answers.

1. Find the isomorphism class of $U(12)$ as a finite abelian group.
2. Find all ideals of \mathbf{Z}_{60}. Explain why that's all of them. Draw a lattice (i.e. sketch subset relations among the ideals).
3. Prove that $\left\{\sigma \in S_{3}: \sigma(3)=3\right\}$ is a subgroup of S_{3}. Is it abelian? Is it a normal subgroup of S_{3} ? Prove your assertions.
4. Find the quotient and remainder of $x^{4}+3 x^{3}+2 x^{2}+x-1$ divided by $2 x^{2}+1$ in $\mathbf{Z}_{7}[x]$.
5. Let $A=\{p \in \mathbf{R}[x]: p(0)=0\}$. Prove that A is an ideal of $\mathbf{R}[x]$. Is A is a prime ideal? Maximal? Explain.

1	2	3	4	5	total (50)	\%
Prelim. course grade:						\%

