Name: \qquad
Please show all work and justify your answers.

1. Suppose $a \in \mathbf{Z}_{n}$. Prove $a \in U(n)$ if and only if a is relatively prime to n. What is $|U(n)|$ if n is prime? Explain. What is the multiplicative inverse of 7 in \mathbf{Z}_{24} ?
2. Let G be the multiplicative subgroup of \mathbf{R}^{*} generated by 1 . Prove or disprove $G \cong \mathbf{Z}_{2}$.
3. Let $S=\{z \in \mathbf{C}:|z|=1\}$ be the unit circle in the complex plane. Prove that S is a multiplicative subgroup of \mathbf{C}^{*}. Sketch S and two nontrivial cosets of S in \mathbf{C}^{*}.
4. Suppose G is an abelian group with $|G|=12$. Must G be cyclic? Explain.
5. Suppose G is a group with $|G|=27$. Prove that G has an element of order 3 .
6. Prove that $\left\{\sigma \in S_{4}: \sigma(4)=4\right\}$ is a subgroup of S_{4}. Is it abelian? Is it a normal subgroup of S_{4} ? Prove your assertions.
7. Find the quotient and remainder of $x^{4}+2 x^{3}+2 x^{2}-x+1$ divided by $2 x^{2}+1$ in $\mathbf{Z}_{3}[x]$.
8. Let A be the ideal generated by $x-1$ in $\mathbf{Q}[x]$. Is A is a prime ideal? Maximal? Explain.

1	2	3	4	5	6	7	8	total (80)

