Name: \qquad
Please show all work and justify your answers.

1. Let $A=\left\{(x, y) \in \mathbf{R}^{2}: x+y=0\right\}$. Prove that A is an additive subgroup of \mathbf{R}^{2}. Sketch A and two different nontrivial cosets of A in \mathbf{R}^{2}.
2. Suppose G is a group with 81 elements. Prove that G has an element of order 3. Provide an explicit example to show that G need not have an element of order 9 .
3. Let $G l_{2}(\mathbf{R})$ denote the multiplicative group of invertible 2×2 matrices with real coefficients and $S l_{2}(\mathbf{R})$ denote the subgroup of $G l_{2}(\mathbf{R})$ of those matrices with determinant 1. Prove that $S l_{2}(\mathbf{R}) \triangleleft G l_{2}(\mathbf{R})$ and $G l_{2}(\mathbf{R}) / S l_{2}(\mathbf{R}) \cong \mathbf{R}^{*}$.
4. Find the isomorphism class of $U(5)$ as a finite abelian group. Explain your reasoning.
5. Prove that a finite integral domain must be a field.
6. Prove or disprove that $\mathbf{Z}_{2}[x]$ has infinitely many ideals.
7. Let $A=\left\{p \in \mathbf{Z}_{m}[x]: p(0)=0\right\}$. Prove that A is an ideal of $\mathbf{Z}_{m}[x]$ and $\mathbf{Z}_{m}[x] / A \cong \mathbf{Z}_{m}$.
8. Let A be as in the preceding problem. Prove that A is a principal ideal, i.e. can be generated by just one polynomial. For which m is A a prime ideal of $\mathbf{Z}_{m}[x]$. For which m is A maximal? Explain.

1	2	3	4	5	6	7	8	total (80)

