Real Analysis II, MAT 4223 Exam $\mathcal{N}^{0}2$, 4/7/93 Instructor: D. Gokhman

Name: _

1. (40 pts.) For the functions $f: [-5, 5] \rightarrow \mathbf{R}$

(a)
$$f(x) = \begin{cases} |x| & \text{for } x \in \mathbf{Q}, \\ -|x| & \text{otherwise.} \end{cases}$$
 (b) $f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x \cos\left(\frac{1}{x}\right) & \text{otherwise.} \end{cases}$

- (i) Sketch f,
- (ii) For the partition $\{-5, 0, 5\}$ and $\xi_1 = -\pi, \xi_2 = 1$ calculate the Riemann sum $S(P, f, \xi_k)$,
- (iii) For the same partition find U(P, f) and L(P, f) (part (a) only),
- (iv) Find the set of all points of discontinuity of f and determine whether f is Riemann integrable on [-5, 5].
- 2. (12 pts.) Find all monotone increasing α on [-5, 5] such that for any continuous f on [-5, 5]

$$\int_{-5}^{5} f \, d\alpha = f(-1) + 3f(1).$$

- 3. (24 pts.) Suppose $\{f_k\}$ is a sequence of continuous functions which converges uniformly to f and x_k converges to x.
 - (a) Prove that $f_k(x_k)$ converges to f(x).
 - (b) Find a counterexample to part (a), if we do not require the convergence to be uniform.
- 4. (24 pts.) Let

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{(n-1)!}$$

- (a) Prove that the above series converges uniformly on **R**.
- (b) Show that f(x) is Riemann integrable on $\left[0, \frac{\pi}{2}\right]$ and

$$\int_0^{\frac{\pi}{2}} f(x) \, dx = e - 1.$$