Name:

1. (20 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfies $|f(x)| \leq x^{2}$ for all $x \in \mathbf{R}$. Prove that f is differentiable at 0 .
2. (20 pts.) True of false questions, circle your choice. If you choose TRUE, give a reason. If FALSE, provide a concrete counter example.

T $\quad \mathrm{F}$ (a) If $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable, then f^{\prime} is continuous.
$\mathrm{T} \quad \mathrm{F} \quad$ (b) If $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$, then there exists $c \in \mathbf{R}$ such that $f(x) \rightarrow c$ as $x \rightarrow+\infty$.
3. (20 pts.) Prove that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function such that $f^{\prime}(x) \in \mathbf{Q}$ for all $x \in \mathbf{R}$, then f^{\prime} is constant.
4. (20 pts.) Prove that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function such that f^{\prime} is bounded, then f is uniformly continuous.
5. (20 pts.) Suppose $p(x)$ is a polynomial of degree $n \geq 15$.
(a) What is the degree of p^{\prime} ?

What is the degree of $p^{(k)}$, where $k \leq n$?
(b) Find the limit of $p(x) e^{-x}$ as $x \rightarrow+\infty$.

