University of Texas at San Antonio

Real Analysis II, mat 4223
Exam $\mathcal{N}^{\mathbf{O}}{ }_{2}$, 4/8/92
Instructor: D. Gokhman

Name:
Make sure to include statements of theorems used in your proofs.

1. (20 pts.) Test the following series for convergence:
(a) $\sum_{n=2}^{\infty} \frac{1}{n \log (n)}$
(b) $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
2. (20 pts.) Find the interval of convergence for the following series:

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n} \quad \text { (b) } \sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{3}}
$$

3. (30 pts .) Find the pointwise limit of the following sequences as $n \rightarrow+\infty$ for $x \in[0,+\infty$) and in each case determine (with proof) whether the convergence is uniform in $[0,+\infty)$:
(a) $\frac{x}{1+n x}$
(b) $\frac{n x^{2}}{1+n x}$
4. (30 pts.) Let

$$
f(x)=\sum_{i=1}^{\infty} \frac{\cos (n x)}{(n-1)!} .
$$

(a) Prove that the above series converges for each $x \in \mathbf{R}$.
(b) Prove that $f(x)$, thus defined, is Riemann integrable in any interval $[a, b]$.
(c) Evaluate

$$
\int_{0}^{\frac{\pi}{2}} f(x) d x
$$

