University of Texas at San Antonio

Real Analysis II, mat 4223
Exam $\mathcal{N}{ }^{-} 1,2 / 26 / 92$
Instructor: D. Gokhman

Name:

1. (30 pts.) For the functions $f:[-5,5] \rightarrow \mathbf{R}$ given below
(i) sketch f,
(ii) find $\varphi_{f}[-5,5]$ (the total variation on $[-5,5]$) and $\omega_{f}(0)$,
(iii) for the partition $\{-5,0,5\}$ and $\xi_{1}=-\pi, \xi_{2}=1$ calculate the Riemann sum $S(P, f, \xi)$,
(iv) find \mathcal{D}_{f} (points of discontinuity) and $m^{*}\left(\mathcal{D}_{f}\right)$,
(v) determine whether $f \in \mathcal{R}[-5,5]$ (Riemann integrable).
(a)

$$
f(x)= \begin{cases}|x| & \text { for } x \in \mathbf{Q} \\ -|x| & \text { otherwise }\end{cases}
$$

(b)

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ x \cos \left(x^{-1}\right) & \text { otherwise }\end{cases}
$$

2. (35 pts .) True of false questions, circle your choice. If you choose true, give a reason. If FALSE, provide a counterexample.
Suppose $f:[a, b] \rightarrow \mathbf{R}$.
T $\quad \mathrm{F}$ (a) If f is differentiable, then $f \in \mathcal{R}[a, b]$.
T F (b) If f is defined by

$$
f(x)= \begin{cases}1 & \text { for } x \in \mathbf{Q} \\ 0 & \text { otherwise }\end{cases}
$$

then for any $\varepsilon>0$ there exists a partition P of $[a, b]$ such that $U(P, f)-L(P, f)<\varepsilon$.

T F (c) If $a<c<d<b$, then $\varphi_{f}[c, d]<\varphi_{f}[a, b]$.
T F (d) If P is a partition of $[a, b]$ and P^{*} is a refinement of P, then $U\left(P^{*}, f\right)-L\left(P^{*}, f\right) \leq U(P, f)-L(P, f)$.
T $\quad \mathrm{F} \quad(\mathrm{e})$ If $f \in \mathcal{R}[a, b]$ and $f>0$, then $1 / f \in \mathcal{R}[a, b]$.
3. (35 pts.) Suppose $f:[a, b] \rightarrow \mathbf{R}$ is differentiable and $\left|f^{\prime}\right| \leq k$ for some $k>0$.
(a) Use the mean value theorem to show that if $[c, d] \subseteq[a, b]$, then $\varphi_{f}[c, d] \leq k(b-a)$.
(b) Show that for any partition P of $[a, b]$, $U(P, f)-L(P, f) \leq k(b-a)^{2}$.

