University of Texas at San Antonio

Real Analysis II, mat 4223
Final Exam, 5/4/92
Instructor: D. Gokhman
Name:

1. (40 pts.) Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous, $f(x) \geq 0$ for all $x \in[a, b]$ and

$$
\int_{a}^{b} f(x) d x=0
$$

Prove that $f(x)=0$ for all $x \in[a, b]$.
2. (45 pts.) True of false questions, circle your choice. If you choose false, give a reason. If TRUE, provide a concrete example.
There exists a function $f:[0,1] \rightarrow \mathbf{R}$ such that
T F (a) f is bounded and not Riemann integrable.
T $\quad \mathrm{F} \quad$ (b) f is monotone and not Riemann integrable.
T F (c) f is Riemann integrable and has infinitely many discontinuities.
3. (35 pts.) Suppose $\left\{f_{k}\right\}$ is a sequence of bounded functions which converges uniformly to f. Prove that f is bounded.
4. (40 pts.) Suppose $\left\{f_{k}\right\}$ is a sequence of continuous functions which converges uniformly to f and x_{k} converges to x. Prove that $f_{k}\left(x_{k}\right)$ converges to $f(x)$.
5. (40 pts.) Suppose $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a continuously differentiable function. A level curve of f is given by the equation $f(x, y)=k$, where k is a constant. Suppose $\left(x_{0}, y_{0}\right) \in \mathbf{R}^{2}$ is not a critical point of f.
(a) Determine the slope of the line tangent to the level curve at $\left(x_{0}, y_{0}\right)$.
Hint: Apply the Implicit Function Theorem. You may have to take cases.
(b) Show that the gradient of f at $\left(x_{0}, y_{0}\right)$ is normal to the level curve.

