University of Texas at San Antonio

Real Analysis II, MAT 4223 Final Exam, 5/4/92 Instructor: D. Gokhman

Name: _

1. (40 pts.) Suppose $f: [a, b] \rightarrow \mathbf{R}$ is continuous, $f(x) \ge 0$ for all $x \in [a, b]$ and

$$\int_{a}^{b} f(x) \, dx = 0.$$

Prove that f(x) = 0 for all $x \in [a, b]$.

- 2. (45 pts.) True of false questions, circle your choice. If you choose FALSE, give a reason. If TRUE, provide a concrete example. There exists a function $f: [0, 1] \rightarrow \mathbf{R}$ such that
- T F (a) f is bounded and not Riemann integrable.
- T F (b) f is monotone and not Riemann integrable.
- T F (c) f is Riemann integrable and has infinitely many discontinuities.
 - 3. (35 pts.) Suppose $\{f_k\}$ is a sequence of bounded functions which converges uniformly to f. Prove that f is bounded.
 - 4. (40 pts.) Suppose $\{f_k\}$ is a sequence of continuous functions which converges uniformly to f and x_k converges to x. Prove that $f_k(x_k)$ converges to f(x).
 - 5. (40 pts.) Suppose $f : \mathbf{R}^2 \to \mathbf{R}$ is a continuously differentiable function. A *level curve* of f is given by the equation f(x, y) = k, where k is a constant. Suppose $(x_0, y_0) \in \mathbf{R}^2$ is not a critical point of f.
 - (a) Determine the slope of the line tangent to the level curve at (x_0, y_0) .

Hint: Apply the Implicit Function Theorem. You may have to take cases.

(b) Show that the gradient of f at (x_0, y_0) is normal to the level curve.