Name: _

Please show all work. If you use a theorem, name it or state it.

- 1. Suppose $f: \mathbf{R} \to \mathbf{R}$ is increasing and $c \in \mathbf{R}$. Prove that f has a left limit at c.
- 2. Suppose $f: \mathbf{R} \to \mathbf{R}$ is differentiable and $c \in \mathbf{R}$. If $\lim_{x\to c} f'(x) = L$, show that f'(c) = L.
- 3. Suppose $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
 - (a) For each $x \in \mathbf{R}$ find f'(x).
 - (b) Show that f' is not continuous at 0.
- 4. Find the limits at 0 and ∞ of $\frac{1}{x}\sin(x)$ and prove your results.
- 5. Let $f(x) = \cos(x)$.
 - (a) What is the *n*-th Taylor polynomial for f(x)?
 - (b) Show that for any $x \in \mathbf{R}$ the *n*-th remainder converges to 0 as $n \to \infty$.

Hint: $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for some *c* between 0 and *x*.

1	2	3	4	5	total (50)