Name: $\qquad$
Please show all work. If you use a theorem, name it or state it.

1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is increasing and $c \in \mathbf{R}$. Prove that $f$ has a left limit at $c$.
2. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and $c \in \mathbf{R}$. If $\lim _{x \rightarrow c} f^{\prime}(x)=L$, show that $f^{\prime}(c)=L$.
3. Suppose $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$.
(a) For each $x \in \mathbf{R}$ find $f^{\prime}(x)$.
(b) Show that $f^{\prime}$ is not continuous at 0 .
4. Find the limits at 0 and $\infty$ of $\frac{1}{x} \sin (x)$ and prove your results.
5. Let $f(x)=\cos (x)$.
(a) What is the $n$-th Taylor polynomial for $f(x)$ ?
(b) Show that for any $x \in \mathbf{R}$ the $n$-th remainder converges to 0 as $n \rightarrow \infty$.

Hint: $R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for some $c$ between 0 and $x$.

| 1 | 2 | 3 | 4 | 5 | total (50) |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

