Name: _____

Please show all work. If you use a theorem, name it or state it.

- 1. Suppose $A = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbf{N} \right\}$ and $f : A \to \mathbf{R}$ is a bounded function.
 - (a) Find all cluster points of A (with proof).
 - (b) State the definition of limit and use it to prove that $(x-1)f(x) \to 0$ as $x \to 1$.
- 2. Prove that $\cos \frac{1}{x}$ fails to have a limit as $x \to 0$, while $\lim_{x \to 0} x \cos \frac{1}{x} = 0$.
- 3. Suppose $f: \mathbf{R} \to \mathbf{R}$ is continuous and $A \subset \mathbf{R}$ is closed and bounded. Prove that the image $f_*(A)$ is closed in \mathbf{R} and bounded.
- 4. Suppose $f: \mathbf{Q} \to \mathbf{R}$ can be extended continuously to \mathbf{R} . Prove that such an extension is unique.
- 5. Suppose $f: \mathbf{R} \to \mathbf{R}$ is increasing and $c \in \mathbf{R}$. Prove that f has a right limit at c.
- 6. Suppose $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^2 \cos \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. Prove that f is differentiable and f' is not continuous at 0.
- 7. Find the limits at 0 and ∞ of $(1+\frac{1}{x})^x$ and prove your results.
- 8. Let $f:(0,2)\to \mathbf{R}$ be defined by $f(x)=\ln x$. Let $p_n(x)$ denote the degree n Taylor polynomial for f at 1. Find p_3 and prove that $p_2(x)\leq f(x)\leq p_3(x)$ for all $x\in(0,2)$.

1	2	3	4	5	6	7	8	total (80)