Name: \qquad
Please show all work. If you use a theorem, name it or state it.

1. Suppose $A=\left\{\frac{(-1)^{n} n}{n+1}: n \in \mathbf{N}\right\}$ and $f: A \rightarrow \mathbf{R}$ is a bounded function.
(a) Find all cluster points of A (with proof).
(b) State the definition of limit and use it to prove that $(x-1) f(x) \rightarrow 0$ as $x \rightarrow 1$.
2. Prove that $\cos \frac{1}{x}$ fails to have a limit as $x \rightarrow 0$, while $\lim _{x \rightarrow 0} x \cos \frac{1}{x}=0$.
3. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and $A \subset \mathbf{R}$ is closed and bounded. Prove that the image $f_{*}(A)$ is closed in \mathbf{R} and bounded.
4. Suppose $f: \mathbf{Q} \rightarrow \mathbf{R}$ can be extended continuously to \mathbf{R}. Prove that such an extension is unique.
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is increasing and $c \in \mathbf{R}$. Prove that f has a right limit at c.
6. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $f(x)=x^{2} \cos \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$. Prove that f is differentiable and f^{\prime} is not continuous at 0 .
7. Find the limits at 0 and ∞ of $\left(1+\frac{1}{x}\right)^{x}$ and prove your results.
8. Let $f:(0,2) \rightarrow \mathbf{R}$ be defined by $f(x)=\ln x$. Let $p_{n}(x)$ denote the degree n Taylor polynomial for f at 1 . Find p_{3} and prove that $p_{2}(x) \leq f(x) \leq p_{3}(x)$ for all $x \in(0,2)$.

1	2	3	4	5	6	7	8	total (80)

