Midterm 3 / November 25, 1998 / Instructor: D. Gokhman

Name: \qquad

1. (10 pts.) Prove that the equation $\cos x=x$ has a real solution.
2. (25 pts.) Suppose $S \subseteq \mathbf{R}$ and $f: S \rightarrow \mathbf{R}$ is a function. Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
(a) If f is $1-1$ and continuous, then f is monotone.
(b) If f is 1-1 and continuous, then $f^{-1}: f(S) \rightarrow S$ is continuous.
(c) If f is uniformly continuous and $\left(x_{n}\right)$ is a Cauchy sequence in S, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
(d) If f is continuous and bounded, then f is uniformly continuous.
(e) If $\forall x, t \in S|f(x)-f(t)| \leq|x-t|$, then f is uniformly continuous.
3. (10 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is decreasing and $a \in \mathbf{R}$.

Prove that $\lim _{x \rightarrow a^{+}} f(x)$ exists.

1	2	3	total (45)	$\%$

