Midterm 2 / November 4, 1998 / Instructor: D. Gokhman

Name: \qquad

1. (20 pts.) Prove that the following functions $f: \mathbf{R} \backslash\{0\} \rightarrow \mathbf{R}$ have no limit in $[-\infty, \infty]$ at 0 :
(a) $f(x)=\frac{1}{x}$
(b) $f(x)=\cos \left(\frac{1}{x}\right)$
2. (20 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{R} \backslash \mathbf{Q} .\end{cases}
$$

Find the set $\{a \in \mathbf{R}: f$ is continuous at $a\}$. Prove your assertion.
3. (30 pts.) Suppose $S \subseteq \mathbf{R}$ and $f: S \rightarrow \mathbf{R}$ is a function.

Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
(a) If $S=\mathbf{R}, f$ is continuous, and A is an open subset of \mathbf{R}, then $f^{-1}(A)$ is an open subset of \mathbf{R}.
(b) If $S=\mathbf{R}, f$ is continuous and $A \subseteq \mathbf{R}$, then $\overline{f(A)}=f(\bar{A})$.
(c) If $S=\mathbf{R}, f$ is continuous, and A is a closed subset of \mathbf{R}, then $f(A)$ is a closed subset of \mathbf{R}.
(d) If S is finite, then f is continuous.
(e) If $S=(0,1)$ and f is continuous, then $f(S)$ has a minimum.

1	2	3	total (70)	$\%$

