Name:

1. (20 pts.) Prove that the following functions $f : \mathbf{R} \setminus \{0\} \to \mathbf{R}$ have no limit in $[-\infty, \infty]$ at 0:

(a)
$$f(x) = \frac{1}{x}$$
 (b) $f(x) = \cos\left(\frac{1}{x}\right)$

2. (20 pts.) Suppose $f: \mathbf{R} \to \mathbf{R}$ is defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbf{Q}, \\ 0 & \text{if } x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$$

Find the set $\{a \in \mathbb{R}: f \text{ is continuous at } a\}$. Prove your assertion.

- 3. (30 pts.) Suppose $S \subseteq \mathbf{R}$ and $f: S \to \mathbf{R}$ is a function. Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
 - (a) If $S = \mathbf{R}$, f is continuous, and A is an open subset of \mathbf{R} , then $f^{-1}(A)$ is an open subset of \mathbf{R} .
 - (b) If $S = \mathbf{R}$, f is continuous and $A \subseteq \mathbf{R}$, then $\overline{f(A)} = f(\overline{A})$.
 - (c) If $S = \mathbf{R}$, f is continuous, and A is a closed subset of **R**, then f(A) is a closed subset of **R**.
 - (d) If S is finite, then f is continuous.
 - (e) If S = (0, 1) and f is continuous, then f(S) has a minimum.

1	2	3	total (70)	%