Real Analysis I/ MAT4213.001

Final / December 10, 1998 / Instructor: D. Gokhman

Name: \qquad Pseudonym: \qquad
Throughout, suppose $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences of real numbers, $x, y \in[-\infty, \infty], x$ is a partial limit of $\left(x_{n}\right)$ and y is a partial limit of $\left(y_{n}\right)$.

1. (20 pts.) Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
(a) If $\exists m \forall n \geq m x_{n} \geq y_{n}$, then $x \geq y$.
(b) If $\forall m \exists n \geq m x_{n} \geq y_{n}$, then $x \geq y$.
(c) If 0 is a partial limit of $x_{n}-y_{n}$, then x is a partial limit of $\left(y_{n}\right)$.
(d) If $x_{n}-y_{n} \rightarrow 0$, then x is a partial limit of $\left(y_{n}\right)$.
2. (10 pts.) Suppose $A \subseteq \mathbf{R}$ and $a \in \bar{A}$. Prove that there exists a sequence in A that converges to a.
3. (10 pts.) Sketch the following functions and prove that they have no limit at 0 :
(a) $f:(0, \infty) \rightarrow \mathbf{R}, f(x)=\sin \left(\frac{1}{x}\right)$
(b) $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)= \begin{cases}1 & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{R} \backslash \mathbf{Q}\end{cases}$
4. (15 pts.) Let f be as in (3b) and let $g(x)=f(x) \sin x$.
(a) Sketch g.
(b) Prove that g is continuous at 0 .
(c) Find the set $\{a \in \mathbf{R}: g$ is continuous at $a\}$.
5. (20 pts.) Suppose $S \subseteq \mathbf{R}$ and $f: S \rightarrow \mathbf{R}$ is a function.

Determine whether each of the following statements is true in general.
If true, prove it. If false, give a specific counterexample.
(a) If $S=\mathbf{R}, f$ is continuous, and A is closed in \mathbf{R}, then $f^{-1}(A)$ is closed in \mathbf{R}.
(b) If $S=\mathbf{R}, f$ is continuous, and A is closed in \mathbf{R}, then $f(A)$ is closed in \mathbf{R}.
(c) If $S=\mathbf{R}, f$ is continuous, and $\forall x \in \mathbf{Q} f(x)=0$, then $f \equiv 0$.
(d) If $S=(0,1)$ and f is continuous, then \exists continuous $g:[0,1] \rightarrow \mathbf{R}$ such that $\forall x \in(0,1) g(x)=f(x)$.
6. (10 pts.) Prove that the equation $\left(x^{2}+1\right)^{-2}=x$ has a real solution.
7. (10 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is decreasing and $a \in \mathbf{R}$. Prove that $\lim _{x \rightarrow a^{-}} f(x)$ exists.

1	2	3	4	5	6	7	total (95)	$\%$

