Real Analysis I / MAT 4213.001 Final / December 10, 1998 / Instructor: D. Gokhman

Name: _____

Pseudonym: _____

Throughout, suppose (x_n) and (y_n) are sequences of real numbers, $x, y \in [-\infty, \infty]$, x is a partial limit of (x_n) and y is a partial limit of (y_n) .

- 1. (20 pts.) Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
 - (a) If $\exists m \ \forall n \ge m \ x_n \ge y_n$, then $x \ge y$.
 - (b) If $\forall m \exists n \ge m \ x_n \ge y_n$, then $x \ge y$.
 - (c) If 0 is a partial limit of $x_n y_n$, then x is a partial limit of (y_n) .
 - (d) If $x_n y_n \to 0$, then x is a partial limit of (y_n) .
- 2. (10 pts.) Suppose $A \subseteq \mathbf{R}$ and $a \in \overline{A}$. Prove that there exists a sequence in A that converges to a.
- 3. (10 pts.) Sketch the following functions and prove that they have no limit at 0:

(a)
$$f: (0, \infty) \to \mathbf{R}, f(x) = \sin\left(\frac{1}{x}\right)$$
 (b) $f: \mathbf{R} \to \mathbf{R}, f(x) = \begin{cases} 1 & \text{if } x \in \mathbf{Q} \\ 0 & \text{if } x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$

- 4. (15 pts.) Let f be as in (3b) and let $g(x) = f(x) \sin x$.
 - (a) Sketch g.
 - (b) Prove that g is continuous at 0.
 - (c) Find the set $\{a \in \mathbf{R}: g \text{ is continuous at } a\}$.
- 5. (20 pts.) Suppose $S \subseteq \mathbf{R}$ and $f: S \to \mathbf{R}$ is a function. Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample.
 - (a) If $S = \mathbf{R}$, f is continuous, and A is closed in \mathbf{R} , then $f^{-1}(A)$ is closed in \mathbf{R} .
 - (b) If $S = \mathbf{R}$, f is continuous, and A is closed in \mathbf{R} , then f(A) is closed in \mathbf{R} .
 - (c) If $S = \mathbf{R}$, f is continuous, and $\forall x \in \mathbf{Q}$ f(x) = 0, then $f \equiv 0$.
 - (d) If S = (0, 1) and f is continuous, then \exists continuous $g: [0, 1] \rightarrow \mathbf{R}$ such that $\forall x \in (0, 1) \ g(x) = f(x)$.
- 6. (10 pts.) Prove that the equation $(x^2 + 1)^{-2} = x$ has a real solution.
- 7. (10 pts.) Suppose $f: \mathbf{R} \to \mathbf{R}$ is decreasing and $a \in \mathbf{R}$. Prove that $\lim_{x \to a^{-}} f(x)$ exists.

1	2	3	4	5	6	7	total (95)	%