University of Texas at San Antonio

Real Analysis I, MAT 4213 Exam $\mathcal{N}^{\underline{O}}1$, 10/12/92 Instructor: D. Gokhman

Name: _____

1. (40 pts.) Suppose (X, d) is a metric space. Given $x \in X$ and a subset $S \subseteq X$ define

$$d^*(x,S) = \inf_{s \in S} d(x,S).$$

Prove that

- (a) $d^*(x, S) = 0 \Leftrightarrow x \in \overline{S}$.
- (b) If S is closed and $x \notin S$, then $d^*(x, S) > 0$.
- (c) S is dense (i.e. $\overline{S} = X$) $\Leftrightarrow \forall x \in X \ d^*(x, S) = 0.$
- (d) S is dense \Leftrightarrow (\forall open nonempty $U \subseteq X$) $S \cap U \neq \emptyset$.
- 2. (40 pts.) True of false questions, circle your choice. If you choose TRUE, prove the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.
- T F (a) A finite subset of \mathbf{R} is compact.
- T F (b) A countable subset of $\mathbf{R} \setminus \mathbf{Q}$ cannot be dense in \mathbf{R} .

T F (c) If
$$E \subseteq \mathbf{R}$$
, then $\overset{\circ}{E} = \overline{E}$ or $\overline{E} = \overset{\circ}{E}$

- T F (d) \mathbf{R} does not have an open cover with a finite subcover.
 - 3. (20 pts.) Classify all nonempty connected $E \subseteq \mathbf{R}$ that are (a) compact. (b) finite.