University of Texas at San Antonio

Real Analysis I, MAT 4213 Exam $\mathcal{N}^{Q}1$, 10/17/91 Instructor: D. Gokhman

Name: .

- 1. (40 pts.) True of false questions, circle your choice. If you choose TRUE, give a sketch of proof of the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.
- T F (a) If D_1 and D_2 are Dedekind cuts (rays in **Q**), then $D_1 \cap D_2 \neq \emptyset$.
- T F (b) If D is a Dedekind cut, then $D > 0 \Leftrightarrow 0 \notin D$.
- T F (c) If $S \subseteq \mathbf{R}$, then S is finite $\Leftrightarrow \mathcal{L}(S) = \emptyset$, where $\mathcal{L}(S)$ denotes the set of all limit points of S.
- T F (d) If S is an open subset of **R**, then $\mathcal{L}(S) \not\subseteq S$.
 - 2. (40 pts.) For each of the following subsets S of \mathbf{R} :

(a)
$$S = \{r \in \mathbf{Q}: r^2 < 5\}$$

(b) $S = \{\frac{n}{n+1}: n \in \mathbf{N}\} \cup \{\frac{1}{n}: n \in \mathbf{N}\}$
(c) $S = \bigcap_{n=1}^{\infty} \left(\frac{n-1}{n}, \frac{n-1}{n}\right)$
(d) $S = \bigcup_{k=1}^{\infty} (-k, 5]$

answer these questions:

- (i) Is S open, closed, neither or both?
- (ii) What is the closure \overline{S} ?
- (iii) Do $\sup S$ and $\inf S$ exist, and if so, what are they?
- 3. (20 pts.) Suppose \mathcal{F} is a collection of compact sets. Prove that $\bigcap_{F \in \mathcal{F}} F$ is compact.