# University of Texas at San Antonio 

Real Analysis I, mat 4213
Final Exam, 12/12/91
Instructor: D. Gokhman

Name:

1. ( 30 pts.) True of false questions, circle your choice. If you choose true, give a brief sketch of proof of the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.

T F (a) Cartesian product of two countable sets is countable.
T F (b) The set of all positive rational numbers is a Dedekind cut.
T F (c) There is a sequence in $\mathbf{R}$ such that the set of its cluster points is $\mathbf{R}$.
T F (d) Every sequence has a convergent subsequence.
T F (e) If a sequence has exactly one cluster point, then it is convergent.
T F (f) Every open cover of $(0,1)$ has a finite subcover.
2. ( 25 pts.) Let $\mathcal{S}$ be the collection of all sets and define a relation on $\mathcal{S}$ by $R=\{(A, B): \exists$ a bijection (i.e. a 1-1 correspondence) $f: A \rightarrow B\}$. Prove that $R$ is an equivalence relation.
3. ( 25 pts.) Suppose $A$ is a nonempty bounded subset of $\mathbf{Q}$. Let $D=$ $\{r \in \mathbf{Q}: \exists q \in A$ such that $r>q\}$. Show that $D$ is a Dedekind cut. What is a more familiar name by which we know this real number?
4. (25 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfies $|f(x)| \leq|x|$ for all $x$. What is $f(0)$ ? Prove that $f$ is continuous at $x=0$.
5. (25 pts.) Suppose $f:[0,1] \rightarrow[0,1]$ is a continuous function. Show that $f$ has a fixed point, i.e. there exists $x \in[0,1]$ such that $f(x)=x$.
6. (20 pts.) True of false questions, circle your choice. If you choose true, give a brief sketch of proof of the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.

Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function,
T $\mathrm{F} \quad$ (a) if $B \subseteq \mathbf{R}$ is a closed set, then $f^{-1}(B)$ is closed.
$\mathrm{T} \quad \mathrm{F} \quad(\mathrm{b})$ if $B \subseteq \mathbf{R}$ is a compact set, then $f^{-1}(B)$ is compact.
$\mathrm{T} \quad \mathrm{F} \quad$ (c) if $A \subseteq \mathbf{R}$ is a closed set, then $f(A)$ is closed.
T $\mathrm{F} \quad(\mathrm{d})$ if $A \subseteq \mathbf{R}$ is a compact set, then $f(A)$ is compact.
7. (25 pts.) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function. Show that if $f^{\prime}$ is bounded, then $f$ is uniformly continuous.
8. (25 pts.) Let $f:[0,1] \rightarrow \mathbf{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { for } x=\frac{1}{2} \\ 1 & \text { otherwise }\end{cases}
$$

Sketch $f$. Construct a partition $P$ of $[0,1]$ such that the lower Riemann sum $L(f, P) \geq \frac{3}{4}$. For the same partition calculate $U(f, P)$.

