Midterm 2 / 2016.3.25 / MAT 3623.001 / Differential Equations II

Name: \qquad
Please show all work.

1. Consider the dynamical system $x^{\prime}(t)=-7 x(t)+3 y(t), y^{\prime}(t)=-18 x(t)+8 y(t)$.
(a) Show that the origin is the unique equilibrium of the system and determine its stability.
(b) Find the invariant manifolds.
(c) Sketch the invariant manifolds and a few trajectories of the system.
2. Consider the boundary value problem $x^{\prime \prime}(t)=t^{2}, x(0)=x(2)=0$
(a) Solve this problem using the variation of parameters formula

$$
x(t)=x_{1}(t) \int_{t}^{2} \frac{f(s) x_{2}(s) d s}{W(s)}+x_{2}(t) \int_{0}^{t} \frac{f(s) x_{1}(s) d s}{W(s)}
$$

where f is the right-hand side, x_{1}, x_{2} are linearly independent solutions of the homogeneous equation satisfying boundary conditions (one each) and W is their Wronskian.
(b) What is the Green's function $G(t, s)$ for this boundary value problem?
(c) Graph $G(1, s)$ on the interval $0 \leq s \leq 2$.
3. Solve the boundary value problem $x^{\prime \prime}(t)-x(t)=t, x(0)+x^{\prime}(0)=1, x(1)-x^{\prime}(1)=1$.

1	2	3	total (30)

