Name:

Please show all work and justify your answers. If you use a theorem, name it or state it. Supply brief narration with your solutions and draw conclusions, including units as appropriate.

- 1. Consider the differential equation $x^2y'' xy' + (1 x)y = 0$.
 - (a) Find and classify all singularities.
 - (b) Construct and solve the indicial equation.
 - (c) Use the method of Frobenius to find two linearly independent solutions. For each of the two series involved compute the first three nontrivial terms.
- 2. A thin rod with length L = 1 meter and diffusivity $\beta = 5$ has an initial temperature distribution $1 \cos(\pi x)$ degrees Celsius for $0 \le x \le 1$. Assume that the ends of the rod are held at constant temperatures (what are they?).
 - (a) What is the temperature distribution for t > 0?
 - (b) What is the limit of your solution as $t \to \infty$, i.e. what is the steady state temperature distribution?

1	2	total (20)	%
Prelim. course grade:			%