University of Texas at San Antonio

Independent Study, mat 4913
Final Exam, 5/11/92
Instructor: D. Gokhman
Name:

1. (20 pts.$)$ Find the radius of convergence of the following power series:
(a) The Maclaurin series for $\left(x^{2}-2 x+2\right)^{-1}$.
(b) $\sum_{k=0}^{\infty} a_{n+1}(n+1) x^{n}$
(assume the radius of convergence of $\sum_{k=0}^{\infty} a_{n} x^{n}$ is ρ).
2. (20 pts .) Find all singular points of the following equations. Determine whether they are regular or irregular. If a singular point is regular, derive and solve the indicial equation.
(a) $x^{3} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0$, where $\alpha \neq 0$
(b) $x(1-x) y^{\prime \prime}+[\gamma-(1+\alpha+\beta) x] y^{\prime}-\alpha \beta y=0$.
3. (20 pts.) Find the general series solution to $y^{\prime \prime}=x y$.
4. (20 pts.) Use second order Taylor series with remainder to derive the local formula error for Euler's method with step h for the equation $y^{\prime}=F(x, y)$.
5. (20 pts .) Let $U \subseteq \mathbf{R}^{2}$ be an open set containing the origin and assume that $f(x, y)$ keeps constant sign in U. Consider the following equation

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
f & 1 \\
-1 & f
\end{array}\right)\binom{x}{y} .
$$

(a) Show that the origin is a critical point of this equation.
(b) Depending on the sign of f determine the stability of the origin by constructing an appropriate Liapunov function.

