University of Texas at San Antonio

Engineering Analysis II, MAT 3263 Exam $\mathcal{N}^{0}2$, 11/21/91 Instructor: D. Gokhman

Name:

- 1. (10 pts.) Classify all continuous functions $f : \mathbf{R} \to \mathbf{R}$ satisfying the following property: if T > 0, then f is periodic with period T.
- 2. (10 pts.) Let $f: \mathbf{R} \to \mathbf{R}$ be a periodic function of period 1 defined by $f(x) = \ln x$ for $x \in (1, 2]$. Sketch f. Let $g = \sum_{n=-\infty}^{\infty} c_n e^{i2n\pi x}$, where $c_n = \int_1^2 \ln(x) e^{-i2n\pi x} dx$. Determine the function f(x) - g(x).
- 3. (30 pts.) Let $\omega > 0$. For $\eta \neq \pm \frac{\omega}{2}$ find the steady state solution of the differential equation $y'' + \omega^2 y = \cos^2(\eta t)$.
- 4. (20 pts.) Let $\hat{f}(\omega)$ denote the Fourier transform of f(x). Let a > 0 and g(x) = f(ax). Express \hat{g} in terms of \hat{f} .
- 5. (30 pts.) Let $f: \mathbf{R} \to \mathbf{R}$ be a periodic function of period 2 defined by $f(x) = e^{|x|}$ for $x \in (-1, 1]$. Sketch f. Find the Fourier series expansion of f.