University of Texas at San Antonio

Engineering Analysis II, MAT 3263
$\operatorname{Exam} \mathcal{N}^{{ }^{\circ}} 1,10 / 17 / 91$
Instructor: D. Gokhman
Name:

1. (20 pts.)
(a) Find a basis for the vector space

$$
\left\{x \vec{i}+y \vec{j}+z \stackrel{\rightharpoonup}{k} \in \mathbf{R}^{3}: x+2 y+5 z=0\right\},
$$

(b) Calculate the projection of the vector $(5,4,2) \in \mathbf{R}$ in the direction given by $(1,-1,0)$. (Note: The answer should be a vector)
2. (25 pts.) Let $\vec{F}=\left(x^{2}-2 x y\right) \vec{i}+\left(y^{2}-2 x y\right) \vec{j}$. Calculate the curve integral of \vec{F} along the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$. Draw the curve first.
3. (25 pts.) Let $\vec{F}=x \vec{i}+y \vec{j}$. Calculate the surface integral of \vec{F} over the surface determined by $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Draw the surface first.
4. (30 pts.) Let $\vec{F}=x^{5} \vec{i}+y^{5} \vec{j}+z^{5} \vec{k}$. Let \mathcal{C} be a curve given in cylindrical coordinates (ρ, θ, z) by
$\rho=\sin \theta, 0 \leq \theta \leq \pi, z=\pi \theta-\theta^{2}$
(a) Calculate the Jacobian matrix of \vec{F}. What is the trace (sum of the diagonal entries) of the Jacobian matrix? What is it equal to in this case?
(b) Calculate $\nabla \times \vec{F}$.
(c) Draw the curve \mathcal{C}. What is the line integral of \vec{F} along this curve?

