University of Texas at San Antonio

Engineering Analysis II, MAT 3263 Exam $\mathcal{N}^{\underline{\mathrm{O}}}1,\,10/17/91$ Instructor: D. Gokhman

Name: .

- 1. (20 pts.)
 - (a) Find a basis for the vector space $\left\{x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \in \mathbf{R}^3: x + 2y + 5z = 0\right\},\$
 - (b) Calculate the projection of the vector $(5,4,2) \in \mathbf{R}$ in the direction given by (1,-1,0). (Note: The answer should be a vector)
- 2. (25 pts.) Let $\vec{F} = (x^2 2xy) \vec{i} + (y^2 2xy) \vec{j}$. Calculate the curve integral of \vec{F} along the parabola $y = x^2$ from (-1, 1) to (1, 1). Draw the curve first.
- 3. (25 pts.) Let $\overrightarrow{F} = x \ \overrightarrow{i} + y \ \overrightarrow{j}$. Calculate the surface integral of \overrightarrow{F} over the surface determined by $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Draw the surface first.
- 4. (30 pts.) Let $\overrightarrow{F} = x^5 \overrightarrow{i} + y^5 \overrightarrow{j} + z^5 \overrightarrow{k}$. Let \mathcal{C} be a curve given in cylindrical coordinates (ρ, θ, z) by $\rho = \sin \theta, \ 0 \le \theta \le \pi, \ z = \pi \theta \theta^2$
 - (a) Calculate the Jacobian matrix of \overrightarrow{F} . What is the trace (sum of the diagonal entries) of the Jacobian matrix? What is it equal to in this case?
 - (b) Calculate $\nabla \times \overrightarrow{F}$.
 - (c) Draw the curve C. What is the line integral of \overrightarrow{F} along this curve?