University of Texas at San Antonio

Engineering Analysis II, MAT 3263 Final Exam, 12/10/91 Instructor: D. Gokhman

Name:

- 1. (25 pts.) Suppose A, B, C are points in \mathbb{R}^3 . Assume that the corresponding position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a linearly independent set.
 - (a) Construct a basis for the vector subspace of \mathbf{R}^3 that is a plane parallel to ABC.
 - (b) Show that $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ is perpendicular to the plane *ABC*.
- 2. (25 pts.) Let $\mathbf{F}(x, y, z) = y \sin z \mathbf{j} + z \cos y \mathbf{k}$.
 - (a) Calculate the Jacobian matrix of **F**.
 - (b) Calculate the trace (sum of the diagonal elements) of this matrix. What is the more familiar name for this operator?
 - (c) Calculate the gradient of this last expression. What is the more familiar name for this operator?
 - (d) Calculate the curl of **F**.
- 3. (25 pts.) Let $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + xyz^2\mathbf{k}$.
 - (a) Sketch the circle $x^2 2x + y^2 = 2$.
 - (b) Calculate directly $\int \mathbf{F} \cdot d\mathbf{r}$ counterclockwise once around the circle.
 - (c) Use the theorem of Stokes to check your answer.
- 4. (25 pts.) Let $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$.
 - (a) Sketch the surface $x^2 + y^2 = z^2$, $1 \le z \le 2$.
 - (b) Calculate $\int \int \mathbf{F} \cdot \mathbf{n} \, dS$ over this surface. Hint: $\cos^3 \theta$ and $\sin^3 \theta$ can be integrated graphically.
- 5. (25 pts.) Suppose \mathcal{S} is a sphere in \mathbf{R}^3 and f(x, y, z) is a harmonic function (i.e. $\nabla^2 f = 0$). Let $\frac{\partial f}{\partial n}$ denote the directional derivative of f along the normal unit vector \mathbf{n} to the surface \mathcal{S} . Show that $\int \int_{\mathcal{S}} \frac{\partial f}{\partial n} dS = 0$.

6. (25 pts.) Suppose f(t) is periodic with period 2L,

$$f(t) = \begin{cases} A \sin\left(\frac{\pi}{L}t\right) & \text{for } 0 \le t \le L, \\ 0 & \text{for } -L < t < 0. \end{cases}$$

(a) Sketch f over three periods.

(b) Find the Fourier series expansion of f.

7. (25 pts.) Let
$$f(x) = \begin{cases} e^{-x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

- (a) Sketch f.
- (b) Find \hat{f} (the forward complex Fourier transform of f).
- (c) Sketch \hat{f} .

8. (25 pts.) Find the general solution to $x^2u_{xy} + 3y^2u = 0$.