Name: ____

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

- 1. Use the method of Lagrange multipliers to find the global maximum and minimum of the scalar field $f(x, y) = 2x^2 + 3y^2$ on the unit disc.
- 2. Compute the volume of the solid enclosed by the surfaces $z = 1 x^2 y^2$ and z = 0.
- 3. Find the scalar potential for the vector field $F = [3x^2, z^2/y, 2z \ln y]$ or show that such a potential doesn't exist.
- 4. Integrate $\omega = y \, dx x \, dy$ around the unit circle counterclockwise. Compute the same integral using Green's theorem.
- 5. Compute the flux of F = [2x, 3y, 0] through the surface $x^2 + y^2 = 1, -1 \le z \le 1$ oriented with the normal away from the z axis both directly and also using the divergence theorem.

1	2	3	4	5	total (50)