Name:

\qquad
Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. In 2 dimensions sketch and label 3 nonempty level sets of $f(x, y)=\sqrt{4 x^{2}+y^{2}}$.

Sketch the graph of $z=f(x, y)$ in 3 dimensions. Is f differentiable? Explain.
2. In each case determine whether the limit exists, and if so, find the limit.
(a) $\lim _{[x, y] \rightarrow 0} \frac{x y-y^{2}}{x^{2}+y^{2}}$
(b) $\lim _{[x, y] \rightarrow 0} \frac{x^{6}-x^{2} y^{4}}{x^{2}+y^{2}}$
3. The temperature distribution (in degrees Fahrenheit) at position $[x, y]$ (in miles) is given by $T(x, y)=98-x^{2} y$. You start walking from $[1,2]$ in the direction 30° south of east at 4 miles per hour. How fast is the temperature changing?
4. Let $f=e^{1+x+y^{2}}$. Compute the Hessian matrix for f and find the quadratic Taylor approximation to f at the origin.
5. A Petri dish 2 inches in diameter is used to grow a culture of bacillus tularensis and the population density is given by $d(x, y)=2 x^{2}+y^{2}-y+3$ in millions of bacilli per square inch. Where is the population density the lowest? The highest?
Hint: parametrize the boundary.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

