Name:

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

- 1. A solid is bounded by the coordinate planes and the plane 5x + 2y + z = 10. Set up, but do not evaluate the iterated integral for the volume with the order of integration z, x, y.
- 2. Integrate $\omega = y \, dx + x \, dy$ along the segment of the curve $x^2 y^5 = 0$ from [-1, 1] to [1, 1]. Had we chosen a different path from [-1, 1] to [1, 1], would the integral remain the same? Explain.
- 3. Find first a parametric formula and then an equation for the plane in \mathbb{R}^3 tangent to the surface $[st, s + t, e^{st}]$ at [0, 1, 1].
- 4. Parametrize the paraboloid $z = 1 x^2 y^2$, $z \ge 0$ oriented with the upward normal. Compute the flux of $\mathbf{F} = [x, y, z]$ through this surface. Would the flux of \mathbf{F} through the unit disc differ? Explain.
- 5. Find a scalar potential on the plane for the conservative vector field $[5x^2 y, 2y^3 x]$.

1	2	3	4	5	total (50)	%

Prelim. course grade: %