Name: \qquad
Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. A solid is bounded by the coordinate planes and the plane $5 x+2 y+z=10$. Set up, but do not evaluate the iterated integral for the volume with the order of integration z, x, y.
2. Integrate $\omega=y d x+x d y$ along the segment of the curve $x^{2}-y^{5}=0$ from $[-1,1]$ to $[1,1]$. Had we chosen a different path from $[-1,1]$ to $[1,1]$, would the integral remain the same? Explain.
3. Find first a parametric formula and then an equation for the plane in \mathbf{R}^{3} tangent to the surface $\left[s t, s+t, e^{s t}\right]$ at $[0,1,1]$.
4. Parametrize the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$ oriented with the upward normal. Compute the flux of $\mathbf{F}=[x, y, z]$ through this surface. Would the flux of \mathbf{F} through the unit disc differ? Explain.
5. Find a scalar potential on the plane for the conservative vector field $\left[5 x^{2}-y, 2 y^{3}-x\right]$.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

