Name:

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Sketch and label 5 level sets of $f(x, y)=x^{2}-y^{3}$, including one at level 0 .
2. In each case determine whether the limit exists, and if so, find the limit.

$$
\text { (a) } \lim _{[x, y] \rightarrow 0} \frac{x y}{x^{2}+y^{2}} \quad \text { (b) } \lim _{[x, y] \rightarrow 0} \frac{x^{3}-y^{3}}{x^{2}+x y+y^{2}}
$$

3. If a trilobyte crawls south at $2 \mathrm{~cm} / \mathrm{s}$, it notices an increase in temperature at the rate of $1 \% \mathrm{~s}$. If it crawls west at $1 \mathrm{~cm} / \mathrm{s}$, the temperature increases by 3%. What is the rate of change of temperature if the cucaracha crawls southeast at $3 \mathrm{~cm} / \mathrm{s}$?
4. Find the divergence and curl of $\left[x^{2} y, \cos (x y z), y^{2} z\right]$.
5. Let $f=e^{x+y^{2}}$. Compute the Hessian matrix for f and find the quadratic Taylor approximation to f at the origin.
6. A solid is bounded by the coordinate planes and the plane $x+2 y+7 z=14$. Set up, but do not evaluate the iterated integral for the volume with the order of integration y, x, z.
7. Integrate $\omega=x d x+y d y$ along the straight line segment from $[-1,-1]$ to $[1,1]$. Had we chosen a different path from $[-1,-1]$ to $[1,1]$, would the integral remain the same? Explain.
8. Find first a parametric formula and then an equation for the plane in \mathbf{R}^{3} tangent to the surface $[s+t, s t, \sin (s t)]$ at $[1,0,0]$.
9. Parametrize the paraboloid $z=2-x^{2}-y^{2}, z \geq 1$ oriented with the upward normal. Compute the flux of $\mathbf{F}=[x, y,-2 z]$ through this surface. Would the flux of \mathbf{F} through the unit disc in the $z=1$ plane differ? Explain.

1	2	3	4	5	6	7	8	9	total (90)

