Name: _

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

- 1. Sketch and label 5 level sets of $f(x, y) = x^2 y^3$, including one at level 0.
- 2. In each case determine whether the limit exists, and if so, find the limit.

(a)
$$\lim_{[x,y]\to 0} \frac{xy}{x^2 + y^2}$$
 (b) $\lim_{[x,y]\to 0} \frac{x^3 - y^3}{x^2 + xy + y^2}$

- 3. If a trilobyte crawls south at 2 cm/s, it notices an increase in temperature at the rate of 1°/s. If it crawls west at 1 cm/s, the temperature increases by 3°/s. What is the rate of change of temperature if the cucaracha crawls southeast at 3 cm/s?
- 4. Find the divergence and curl of $[x^2y, \cos(xyz), y^2z]$.
- 5. Let $f = e^{x+y^2}$. Compute the Hessian matrix for f and find the quadratic Taylor approximation to f at the origin.
- 6. A solid is bounded by the coordinate planes and the plane x + 2y + 7z = 14. Set up, but do not evaluate the iterated integral for the volume with the order of integration y, x, z.
- 7. Integrate $\omega = x \, dx + y \, dy$ along the straight line segment from [-1, -1] to [1, 1]. Had we chosen a different path from [-1, -1] to [1, 1], would the integral remain the same? Explain.
- 8. Find first a parametric formula and then an equation for the plane in \mathbf{R}^3 tangent to the surface $[s + t, st, \sin(st)]$ at [1, 0, 0].
- 9. Parametrize the paraboloid $z = 2 x^2 y^2$, $z \ge 1$ oriented with the upward normal. Compute the flux of $\mathbf{F} = [x, y, -2z]$ through this surface. Would the flux of \mathbf{F} through the unit disc in the z = 1 plane differ? Explain.

1	2	3	4	5	6	7	8	9	total (90)