Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

- 1. Use cylindrical coordinates to integrate $(x^2 + y^2 + 3z^2) dx dy dz$ over the solid $x^2 + y^2 \le 4, -2 \le z \le 1$.
- 2. Either find a scalar potential for F or explain why it fails to exist, where (a) F = [y, -x, 0] (b) F = [x, y, z]
- 3. Either find a vector potential for F or explain why it fails to exist, where (a) F = [2x, -y, -z] (b) F = [3x, -y, -z]
- 4. Use Green's theorem to calculate the area under one arch of the cycloid $[x, y] = [t \sin t, 1 \cos t]$ pictured below.

Hint: Find a 1-form ω such that $d\omega=dx\,dy$ and recall that $\int_\Omega d\omega=\int_{\partial\Omega}\omega$

5. Find the flux of [7x, 8y, 9z] through the unit sphere. Hint: Don't do it directly. $\ddot{\neg}$

1	2	3	4	5	total (50)	%

Prelim. course grade: %