Name:

\qquad
Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Let $\mathbf{r}=[x, y, z]$ and $r=|\mathbf{r}|$. Express $\nabla \cdot\left(r^{n} \mathbf{r}\right)$ in terms of r.
2. Let $\omega=x d x+y d y+z d z$ and $\eta=\left(x^{2}+y z\right) d y d z+\left(y^{2}+z x\right) d z d x+\left(z^{2}+x y\right) d x d y$. Compute $d \eta$ and $\omega \wedge \eta$.
3. Given a steady temperature distribution $f(x, y)=x^{y}$, how quickly does the temperature change as you start moving from the point $[3,2]$ towards $[2,3]$ with speed 5 ?
4. Use cylindrical coordinates to parametrize the solid cone $z^{2}=x^{2}+y^{2},-1 \leq z \leq 0$. Integrate $\left(x^{2}+y^{2}-z^{2}\right) d x d y d z$ over this cone.
5. Either find a scalar potential for $\left[3 x^{2}, z^{2} / y, 2 z \ln y\right]$ or explain why it fails to exist.
6. Either find a vector potential for $\left[x y^{2} z,-y^{3} z, x^{2} y+y^{2} z^{2}\right]$ or explain why it fails to exist.
7. Verify the fundamental theorem $\int_{\Omega} d \omega=\int_{\partial \Omega} \omega$ with $\omega=x z d x+y z d y+\left(x^{2}+y^{2}\right) d z$ and the surface Ω given by $x^{2}+y^{2}+2 z=1, z \geq 0$ oriented with the upward normal. Sketch. Hint: Parametrize Ω using cylindrical coordinates.

Extra credit: Who first discovered the special case of the fundamental theorem that applies here?
8. Let F be a smooth vector field on \mathbf{R}^{3} such that the flux of F through the lateral surface of a cone of volume b is q. If F has constant divergence c, what is the flux of F through the base of the cone? Explain.

1	2	3	4	5	6	7	8	total (80)	$\%$

