Name:

Please show all work and justify your statements. Label sketches, draw conclusions using complete sentences including units, and box your final answers as appropriate.

- 1. Wide Axle Company produces axles at two locations in quantities q_1 and q_2 . The total cost of production is $2q_1^2 + q_1q_2 + q_2^2 + 500$. Wide Axle wants to produce 200 axles. Use Lagrange multipliers to explain how the production should be split between the two locations in order to minimize cost?
- 2. Integrate $\eta = -y \, dx + x \, dy + z \, dz$ along the straight line segment from [1, 1, 0] to [3, 2, 1]. Compute $d\eta$. Had we chosen a different path between the two points, would the integral remain the same? Explain.
- 3. Find an equation and a parametric formula for the plane tangent to the surface [st, s + t, s t] at [-2, 1, 3].
- 4. Compute the flux of F = [x, y, z 1] through the unit disc in the x-y plane. Then, use the divergence theorem to find the flux of F through the top half of the unit sphere. [Hint: the hemisphere and the disc together, with appropriate orientation, form the boundary of a solid.] [Formulas: surface area of a sphere of radius ρ is 4πρ² and its volume is 4πα³]

1	2	3	4	total (40)	%

Prelim. course grade: %