Name: _

Please show all work and justify your statements. Label sketches, draw conclusions using complete sentences including units, and box your final answers as appropriate.

- 1. Compute the following linear approximations.
 - (a) Find an equation for the plane tangent to the surface $2^x \ln z = y \sin(\pi y z)$ at [2, 1, 1].
 - (b) Find a parametric formula for the line tangent to $[\cos(\pi t), \sin(\pi t), 2t]$ at [0, 1, 1].
- 2. Consider the vector field F(x, y, z) = [x + yz, y + zx, z + xy].
 - (a) Compute DF and $\nabla \cdot F$.
 - (b) Find a scalar potential for F. What conclusion can you make about $\nabla \times F$? Explain.
- 3. Suppose F = f(u, v, w), where u = y z, v = z x, w = x y. Express the partial derivatives of F with respect to x, y, and z in terms of the partial derivatives of f with respect to u, v, and w.
- 4. For the scalar field $f(x,y) = 2x 3y + \ln(xy)$ find all critical points and classify them using the Hessian criterion.

1	2	3	4	total (40)	%

Prelim. course grade: %