Name: \qquad
Please show all work and justify your statements. Label sketches, draw conclusions using complete sentences including units, and box your final answers as appropriate.

1. A solid is bounded by the coordinate planes and the plane $2 x+3 y+z=6$. Its mass is the integral of the density $10+x+y$ over the solid. Set up, but do not evaluate, the iterated integral for the mass with the order of integration z, y, x.
2. Integrate $y d x$ along the straight line segment from $(1,1)$ to $(5,3)$. Had we chosen a different path from $(1,1)$ to $(5,3)$, would the integral remain the same? Explain.
3. Find an equation and a parametric formula for the plane tangent to the surface $\left[s^{2} t, s t^{2}, s+t\right]$ at $[-4,2,1]$.
4. Compute the flux of $\mathbf{F}=\left[(x-1)^{2} y^{2}, y, z\right]$ through the unit disc in the y - z plane.
5. Let $\omega=e^{x y}$ and $\eta=x d y+y d z$. Find and simplify $d \omega \wedge \eta$ and $d \omega \wedge d \eta$.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						

