Midterm 1 / 2004.10.13 / Calculus for Applications / MAT 3243

Name: \qquad
Please show all work and justify your statements. Label sketches, draw conclusions using complete sentences including units, and box your final answers as appropriate.

1. A surface in \mathbf{R}^{3} is given by $e^{x y}+e^{x z}-2 e^{y z}=0$. Find an equation for the plane tangent to this surface at $(-1,-1,-1)$.
2. Find a parametric formula for the line tangent to the path $(5 \cos (3 t), 6 t, 5 \sin (3 t))$ at the point $(5,0,0)$.
3. Let $f(x, y, z)=x^{2} z$ and $F(x, y, z)=\left(0, e^{x y z}, 0\right)$.
(a) Compute the directional derivative of f along the direction given by $(1,1,0)$.
(b) Compute the curl and the divergence of the vector field $F+\nabla f$.
4. A six inch pizza fresh out of the oven has the temperature distribution $98-3 x^{2}-2 y^{2}-3 x$ degrees Celsius (the pizza is centered at the origin). Where is the pizza the hottest? Where should you bite first to minimize the chance of burning your mouth?
5. Suppose $z=f(u, v)$, where $u=2 x-y$ and $v=x+2 y$. Express the partial derivatives of z with respect to x and y in terms of the partial derivatives of f with respect to u and v.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						

