Name: \qquad
Please show all work and justify your statements. Make and label sketches, draw conclusions (using complete sentences and including units), and box your final answers as appropriate.

1. Integrate $\omega=x d y$ along the segment of the curve $x^{4}-y^{3}=0$ from $(-1,1)$ to $(1,1)$.
2. Find all ω on the plane such that $d \omega=(2 x-3 y) d x+(4 y-3 x) d y$.
3. Find an equation and a parametric formula for the plane tangent to the surface $\left[e^{s}, t^{2} e^{2 s}, 2 e^{-s}+t\right]$ at $[1,4,0]$.
4. Find the flux of $\mathbf{F}=[x, 3 y, 0]$ out of the cylinder $x^{2}+y^{2}=4,-1 \leq z \leq 1$.
5. Compute the flux of the vector field $\mathbf{F}=\left[x+\cos (y z), e^{x z}+y, z-\sin (y x)\right]$ out of the unit sphere. Hint: to avoid major computations, use the divergence theorem.
6. Let $\omega=x y$ and $\eta=y d x+x d z$. Find and simplify $d \omega \wedge \eta$ and $d \omega \wedge d \eta$.

1	2	3	4	5	6	total (60)	$\%$
Prelim. course grade: $\%$							

