Name: .

Please show all work and justify your statements. Make and label sketches, draw conclusions (using complete sentences and including units), and box your final answers as appropriate.

- 1. A surface in \mathbb{R}^3 is given by $xz + \cos(yz) = 2$. Find an equation for the plane tangent to this surface at (1, 0, 1).
- 2. Find parametric formulas for
 - (a) The line tangent to the path $[\cos(\pi t), 3^t 1]$ at [1, 8].
 - (b) The plane tangent to the surface $[st, s + t, e^{st}]$ at [0, 1, 1].
- 3. (a) Compute the curl and the divergence of the vector field $[xyz, 1, \ln(x^2 + y^2 + z^2)]$.
 - (b) Let $\omega = xy$ and $\eta = y \, dx + x \, dz$. Find and simplify $d\omega \wedge \eta$ and $d\omega \wedge d\eta$.
- 4. In calm seas an oil tanker hits an underwater sand bar and springs a leak. After a while, the radius of the resulting oil slick is 5 km and is increasing at the rate of 100 m/h. At the same time the thickness of the slick is 1 mm and is increasing at the rate of 0.02 mm/h. Estimate the rate at which the oil leaks out of the tanker.
- 5. Compute the work done by the force $\mathbf{F} = [y, 0]$ in moving a particle along the top half of the unit circle in \mathbf{R}^2 .
- 6. What is the integral of $\omega = x \, dx + y \, dy + z \, dz$ around any closed loop in \mathbb{R}^3 ? Explain.
- 7. Find a potential for the vector field $\mathbf{F} = [3x^2 5y, 9y^2 5x].$
- 8. Find the flux of $\mathbf{F} = [3x, 5y, z]$ through the surface $x^2 + y^2 = 9, -2 \le z \le 3$.
- 9. Let *M* be the unit disc in \mathbb{R}^2 and $\omega = -y \, dx + x \, dy$. Verify the fundamental theorem of calculus $\int_{\partial M} \omega = \int_M d\omega$ in this case.
- 10. A fuel rod has the shape of a solid cylinder $r \le 1$, $0 \le z \le 10$. If the density of fuel is $\rho(r, \theta, z) = (4 r^2)(12 z)$, what is the total mass of the rod?

1	2	3	4	5	6	7	8	9	10	total (100)