Name: \qquad
Please show all work and justify your statements. Make and label sketches, draw conclusions (using complete sentences and including units), and box your final answers as appropriate.

1. A surface in \mathbf{R}^{3} is given by $x z+\cos (y z)=2$. Find an equation for the plane tangent to this surface at $(1,0,1)$.
2. Find parametric formulas for
(a) The line tangent to the path $\left[\cos (\pi t), 3^{t}-1\right]$ at $[1,8]$.
(b) The plane tangent to the surface $\left[s t, s+t, e^{s t}\right]$ at $[0,1,1]$.
3. (a) Compute the curl and the divergence of the vector field $\left[x y z, 1, \ln \left(x^{2}+y^{2}+z^{2}\right)\right]$.
(b) Let $\omega=x y$ and $\eta=y d x+x d z$. Find and simplify $d \omega \wedge \eta$ and $d \omega \wedge d \eta$.
4. In calm seas an oil tanker hits an underwater sand bar and springs a leak. After a while, the radius of the resulting oil slick is 5 km and is increasing at the rate of $100 \mathrm{~m} / \mathrm{h}$. At the same time the thickness of the slick is 1 mm and is increasing at the rate of 0.02 mm / h. Estimate the rate at which the oil leaks out of the tanker.
5. Compute the work done by the force $\mathbf{F}=[y, 0]$ in moving a particle along the top half of the unit circle in \mathbf{R}^{2}.
6. What is the integral of $\omega=x d x+y d y+z d z$ around any closed loop in \mathbf{R}^{3} ? Explain.
7. Find a potential for the vector field $\mathbf{F}=\left[3 x^{2}-5 y, 9 y^{2}-5 x\right]$.
8. Find the flux of $\mathbf{F}=[3 x, 5 y, z]$ through the surface $x^{2}+y^{2}=9,-2 \leq z \leq 3$.
9. Let M be the unit disc in \mathbf{R}^{2} and $\omega=-y d x+x d y$. Verify the fundamental theorem of calculus $\int_{\partial M} \omega=\int_{M} d \omega$ in this case.
10. A fuel rod has the shape of a solid cylinder $r \leq 1,0 \leq z \leq 10$. If the density of fuel is $\rho(r, \theta, z)=\left(4-r^{2}\right)(12-z)$, what is the total mass of the rod?

1	2	3	4	5	6	7	8	9	10	total (100)

